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MinireviewTechnology for Chronic Pain
Suyi Zhang1 and Ben Seymour1,2

Technology developed for chronic pain management has
been fast evolving and offers new stand-alone prospects
for the diagnosis and treatment of pain, rather than simply
addressing the limitations of pharmacology-based ap-
proaches. There are two central challenges to be tackled:
developing objective measures that capture the subjec-
tivity of pain experience, and providing technology-based
interventions that offer new approaches for pain manage-
ment. Here we highlight recent developments that hold
promise in addressing both of these challenges.

Chronic pain is the greatest cause of disability worldwide [1].
Tension-type headache, migraine, low back and neck pain,
alongwith othermusculoskeletal pain conditions, are among
the most prevalent neurological causes of disability. In west-
ern societies, chronic pain is by far the most costly, in eco-
nomic terms, of all neurological and psychiatric conditions
as a result of its associated impact on theworking population
and its care requirements in the elderly. This enormous soci-
etal burden is fed in no small way by the inadequacy of cur-
rent pharmacology-based treatments, especially for severe
pain. In light of its fast-evolving nature and its contribution
to many areas of medicine, medical technology has the
capacity to become an integral part of the diagnosis and
treatment of pain. In this minireview, we consider whether
technology can offer a newdirection in chronic painmanage-
ment by addressing two central challenges — developing
new objective measures that capture the subjectivity of
pain experience, and providing technology-based treat-
ments that offer new avenues of pain management.
Sensors and Biomarkers
Thomas Lewis, a Welsh neurologist, once wrote: ‘‘Pain is
known to us by experience and described by illusion.’’
Indeed, the lack of any adequately objective, measurable
index of pain is at the heart of clinical frustration regarding
its management. On account of its fundamentally subjective
nature, pain is currently measured almost solely by self-
reporting, through either clinical questionnaires or visual
analogue scale (VAS). Whilst simple and quantifiable, these
approaches can be criticised for being idiosyncratic, lacking
in consistency within or concordance between individuals,
reactive to suggestions, and perhaps more importantly,
pervious to deception and impression management [2].
Moreover, self-reporting may not always be available, for
example, in the case of the very young, the elderly, and those
otherwise unable to communicate effectively.

An objective pain measure could be used for three distinct
classes of applications. First, it could be used in a clinical
setting as a diagnostic and prognostic biomarker, to help
classify and quantify patients, and to predict comorbidities
and response to treatment. Second, in a domestic setting,
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it could be used to evaluate andmonitor patients in their daily
life, and to understand the dynamics and impact of treat-
ments on pain. Third, in a clinical engineering context, it
could be used either to directly control treatment delivery,
such as drug delivery or brain stimulation, or in communica-
tion devices. Accordingly, significant efforts continue to be
made to try to devise objective indices of pain using behav-
ioural, physiological, and brain activity measures (Figure 1).

Analysing Behaviour
Non-verbal pain behaviours may be as communicative as
verbal self-reporting and, at an individual level, these are
often easy to interpret from observation. Vocalisations of
distress, abnormal posturing and facial expressions, and
impaired functioning and movement all convey distress.
However, although the information is clearly present, their
usefulness as pain indices has been difficult to exploit
because of the subjectivity inherent in human observers,
and the difficulty in quantification of relevant data.
Recently, advances in computer vision have inspired the

possibility of automatic recognition of facial expressions of
pain without the need for human assessors. Fully automated
computer vision systems code facial muscular movements
according to a facial action database (based on Gabor filter
decomposition of video frames — a feature extraction pro-
cess (based on orientation selectivity of the filter) similar to
that of the mammalian visual system) and measure their
magnitudes in real time. The resulting set of component
action units is then used as temporal features for classifiers.
In previous studies, such detection systems have been used
to discriminate pain from non-pain [3], and to classify real
from faked pain expressions [4]. In both cases, computer
vision outperforms human observers with significantly
higher accuracy; it is also superior in capturing miniscule
changes otherwise undetectable to human experts, and in
continuously monitoring streams of video data. However,
facial recognition methods cannot quantify pain directly,
and different contexts or cultural background of the subject
may influence the sensitivity of these methods, making them
unlikely to become stand-alone pain assessments.
In addition to facial expression, many pain disorders will

have motor manifestations in other domains, such as
posture, gait and movement. Technologies such as the
measurement of electrical activity produced by muscles
(electromyography, EMG), body-attached movement sen-
sors (accelerometry), foot or floor-plate pressure sensors,
and environmental motion-capture systems (such as
‘Kinect’), can in principle capture impaired or alteredmuscu-
loskeletal function as a result of pain. Surface EMG activities
can inform muscle recruitment pattern, such as onset timing
and symmetry, which may be significantly altered in patients
who adopt different movement strategies because of pain
[5]. Another approach is to measure alterations in the range
of motion and related kinematic features (such as movement
smoothness and jerk), using 3D orientation/motion sensors
[6] and ground reaction force plates [7]. Wireless and wear-
able sensors facilitate remote (e.g. domestic) data collection,
together with software/applications in mobile devices, they
can be used for self-monitoring or preventative purposes in
pain management [8]. At present, movement sensing is bet-
ter suited to be part of the diagnostic investigation rather
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Figure 1. Behavioral, physiological, and
direct brain signals that can be sensed
as pain biomarkers. fMRI, functional mag-
netic resonance imaging; EEG, electroen-
cephalogram; ECG, electrocardiogram; EMG,
electromyogram.
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than solely as a pain indicator because
of its required specificity in muscle
groups and/or tasks; its high-false pos-
itive rate (e.g. interpreting non-painful
movement as painful) and high inter-in-
dividual variability are also potentially
problematic.

Analysing Physiological Signals
Pain may not always elicit externally
perceivable pain behaviour, but its
role in homeostasis is manifest by
efferent responses in the autonomic
nervous system [9]. Therefore, physio-
logical signals that act as indices of
autonomic regulation, including heart
rate variability recorded via an electro-
cardiogram (ECG), skin conductance,

also known as the galvanic skin response (GSR), blood vol-
ume fluctuations measured via photoplethysmography
(PPG), and pupillary dilation, are potential pain indices. It
has been demonstrated that a linear combination of multiple
autonomic parameters can differentiate various intensities of
acute heat pain that cannot be accomplished by a single
parameter: the variability within sympathetic/parasympa-
thetic outflows to different end organs can permit different
autonomic parameters to generate a multi-dimensional
model for pain intensity classification [10]. A recent study
further supported this idea, as it showed that combined
skin conductance and pupillary signals could predict pain in-
tensity with high accuracy [11].

Autonomic indices, especially when used in isolation, face
several weaknesses, however. First, these indices are not
specific to pain compared with other salient and alerting
stimuli. Second, theymay be less useful in chronic compared
with acute pain assessments. Third, autonomic parameters
can vary significantly across individuals, according to trait
differences such as gender, genotype, fear of pain, and level
of pain catastrophising [12]. Although this last issue may be
overcome by careful calibration or the use of extensive data-
bases, the first two weaknesses may prove problematic in
attempts to use physiological pain markers in clinical set-
tings. With a number of wearable autonomic sensors being
commercially developed, in addition to the greater applica-
tion of multivariate methods [13–15], the validity of using
combined physiological signals as a pain indicator could
be substantially enhanced.

Analysing Brain Activity
The ability to identify acute pain with sensitivity and speci-
ficity is now well established with functional magnetic reso-
nance imaging (fMRI) [13–15]. Using multivariate pattern
analysis (MVPA) of voxel-based blood oxygen level depen-
dent (BOLD) responses, it is possible to predict intensity
and even spatial location of acute pain, in a manner that is
both specific to pain versus other salient stimuli and general-
ises across individuals. This convincingly demonstrates the
existence of information-rich, measurable signals for pain
in the brain. However, to be useful for applications, two
important challenges need to be met. First, clinical diag-
nostic biomarkers require classifiers to be developed for
chronic pain, not acute pain. Second, monitoring devices
and neural engineering applications require implantable or
wearable sensors, since portable fMRI is impossible.
Two approaches have been proposed for the development

of fMRI-based MVPA clinical biomarkers. The first is to use
voxel-based BOLD responses to acute phasic pain, e.g.
electrical stimulation of the back, in patients with chronic
back pain and compare with healthy controls; recent studies
have demonstrated the feasibility of this strategy [14,16]. The
second is to look at brain connectivity during resting-state
brain activity. This latter approach has perhaps the most
promise, since there is now substantial evidence that chronic
pain and many other neurological and psychiatric brain dis-
orders (such as depression, autism, and obsessive compul-
sive disorder) display abnormal brain connectivity, which in
principle can be used for both univariate and multivariate
pattern-based classification and prediction. In particular,
the recent use of network theoretic approaches (graph the-
ory) [17] to try to characterise the nature of connectivity
disruption offers the hope of mapping data-driven bio-
markers to the underlying biology.
fMRI cannot be used as an ambulant sensor, and although

functional near-infrared spectroscopy (NIRS), which also
measures blood flow, can be measured with wireless
portable detectors, it is currently too cumbersome to be
practical. Electroencephalogram (EEG), electrocorticogram
(ECoG) and implanted deep brain electrode local field poten-
tial (LFP) signals may offer an alternative. In addition to elic-
iting spatially specific evoked responses in experimental
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deep brain stimulation (DBS), motor cortex
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stimulation (TMS). (B) Schematic drawing of
multi-electrode spinal cord stimulation (SCS)
arrays.
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settings, pain has more persistent disruptive effects on tha-
lamocortical synchrony that may be useful in ambulant set-
tings [18]. Similar event-related desynchronisation has also
been identified in human subdural ECoG recordings [19]. In
particular, persistent pain induces clear changes in oscilla-
tory power in both theta and alpha frequency bands
[20,21]. In a minority of chronic pain patients with implanted
deep brain stimulation electrodes, LFP recordings have also
shown a site-specific, time-frequency-dependent correla-
tion with reported pain scores [22]. In summary, whilst
fMRI will likely to become a valuable tool for clinical diag-
nosis, ambulant monitoring of pain may require the integra-
tion of sensing from multiple domains (neural, physiological
and behavioural), which can capitalise on rapidly advancing
sensor, network, and decoding technologies.

Ultimately, any behavioural or physiological method for
pain detection or diagnosis must meet quite stringent
criteria for specificity and sensitivity in order for it to be clin-
ically useful. It also needs to be practical, robust (across
environments and time), generalisable across patients and
sites, and inexpensive. Thus, the emphasis of current
research is on improving both sensor technology and anal-
ysis methodology.

Technology-based Interventions
Recent years have seen a growing interest in technology-
based interventions in the management of neurological and
psychiatric diseases. The first record of pain treatment using
electrical stimulation dates back to about 15 AD: a Roman
court physician, Scribonius, observed accidental contact
with torpedo fish was able to relieve gout pain and recom-
mended applying torpedo fish to painful regions as a general
treatment [23]. Unlike conventional pharmacology, neuro-
modulation has the advantages of immediate delivery,
reversibility and programmability, and a potentially lower
risk of adverse effects. Recent clinical studies and trials
have demonstrated the safety and efficacy of various neuro-
modulation modalities in chronic pain treatment (Figure 2).

Spinal Cord Stimulation
First proposed by Shealy and colleagues in 1967, implant-
able spinal cord stimulation (SCS) was initially utilised for
cancer pain relief as an alternative to neuro-ablation. The first
model consisted of platinum plate electrodes implantable
in the spinal subarachnoid space, with external power
supply through needles passing
through the skin [24]. The electrical
stimulation in the dorsal columns cre-
ates non-painful, tingling paraesthesia,
which attenuates the sensation of pain
in the affected area. Although it is not
especially well understood how SCS
produces analgesic effects, several
mechanisms have been proposed for certain types of pain,
including through both neural and vascular effects. Overall,
SCS has gained acceptance (FDA approval) in the treatment
of various chronic pain conditions of the limbs and trunk,
amongst which mixed-pain syndromes, such as failed back
surgery syndrome (FBSS), and inoperable ischemic limb
pain, are the most common indications [25].
Current SCS systems are often equipped with implanted

multi-electrode arrays, conductive leads, and a controllable
pulse generator. Multi-electrode, paddle-type arrays offer
more contact points, which lower surgical revision rate and
the incidence of lead fracture, and allow more complex
programming to stimulate specific dorsal column fibres
[24]. Implanted pulse generators with rechargeable batte-
ries, or radio-frequency receivers driven externally via
antenna are both in use, with the latter aimed for use in
patients requiring high-power stimulations [25]. Recently,
high-frequency SCS systems at 5–10 kHz, a huge departure
from the conventional range of 20–120 Hz, showed consis-
tent pain relief in patients while inducing no perception of
paraesthesia [26]. While its mechanism remains unknown,
a recent animal study showed SCS at kHz level provided
earlier inhibition of mechanical hypersensitivity [27], which
suggests that other peripheral mechanisms may be respon-
sible for satisfactory pain relief in some high-frequency
SCS patients who previously failed conventional SCS trials
because of inadequate paraesthesia coverage.
Other technological improvements include position-adap-

tive SCS driven by acceleration sensors that deal with the
problem of under/overstimulation during a shift in body posi-
tions (and hence relative electrode–cord contact position)
[28]. However, SCS is only effective in about 50–70% of
cases and the causes of this remain unclear, meaning that
a reasonable number of patients will end up seeking alterna-
tive treatments.

Deep Brain and Motor Cortex Stimulation
The first attempts using deep brain stimulation (DBS) for
treating refractory pain date back to over 50 years ago,
preceding both the gate control theory and SCS [29]. DBS
involves surgical implantation of electrodes for electrical
stimulation in pre-identified target sites located in deep
brain structures — most commonly, the periaqueductal
and/or periventricular gray matter (PAG/PVG), the sensory
thalamus (the ventroposterolateral/ventroposteromedial
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nucleus, VPL/VPM), the internal capsule, and the posterior
hypothalamus [30,31]. The exact mechanism behind DBS-
induced analgesia is not yet fully understood. It is assumed
that stimulating PAG/PVG activates the descending pain
modulatory systems and/or increases the release of endog-
enous opioids, while the stimulation of the sensory thalamus
acts by modulating the integration or propagation of the
transmitted sensory information, independent of opioid
release [32]. It is also proposed that multiple mechanisms
may be involved simultaneously [33].

As a result of the limited number of patients treated and a
few, less-successful, earlier clinical studies, DBS for chronic
pain treatment has yet to gain FDA approval, at the same
time facing competition from cheaper, less invasive, and
more easily implementable alternatives. The development
of DBS has also been limited by the lack of consensus
regarding the targeted stimulation sites and by patient selec-
tion, which contributed greatly to variability in efficacy
[32,34]. The reported long-term success rate of DBS varied
from 19% to 79%, and appeared to be higher for the treat-
ment of certain pain states than others [31]. Fortunately,
recent studies of DBS using neuroimaging and neuroelectro-
physiology techniques may help in elucidating these issues.
For example, magnetoencephalography (MEG) allows for a
comparison of DBS-induced functional brain changes in
the long- and short-term [35]. Also, local recordings from
deep brain electrodes may contain neural ‘signatures’ of pa-
thologies thatmight act as predictors of treatment efficacy or
as feedback signals in new generation modulators [29].

Motor cortex stimulation (MCS) for pain relief originated
from epidural brain stimulation, a less invasive alternative
to DBS. In early exploratory research of neuropathic pain,
Tsubokawa et al. [36] first demonstrated that stimulating
the motor cortex using dural electrodes showed excellent
pain reduction in post-stroke patients with thalamic pain, in
cases where SCS and DBS had shown limited efficacy. The
mechanism behind MCS pain modulation remains elusive;
it is speculated that the excitation of the motor cortex may
induce inhibition of nociceptive neurons in somatosensory
areas, possibly also extending to the spinal cord [34,37].
According to an efficacy study, 55% of patients who had un-
dergone MCS and 45% of those in 1-year post-operative
follow-ups reported significant (i.e. more than 40%) pain
relief [38].

Transcranial Magnetic Stimulation
Compared with SCS and DBS, transcranial magnetic stimu-
lation (TMS) has the innate advantage of being non-invasive
and hence safer with respect to the adverse events that may
come with surgery. TMS is thought to achieve the same
effect as MCS, but in a non-invasive manner through brief
alternating magnetic fields on the scalp over the target; this
stimulation induces electrical currents in the neurons of the
cortex. Low-frequency stimulation (around 10 Hz) applied
to the motor cortex within the somatotopic representation
of the painful area in M1 has shown lasting pain relief in
various neuropathic pain conditions [39]. In most cases,
modest analgesic effects are reported after one or two
weeks of daily repetitive TMS sessions [40,41]. In a study
where a reduced number of weekly sessions were con-
ducted after initial daily stimulations, some patients showed
residual pain relief lasting for up to four weeks after stimula-
tion stopped [40]. Additionally, the fact that the motor cortex
is the targeted stimulation site enables the use of evoked
motor responses, or EMG, for target localisation. Recent
development of MRI-navigated TMS allows more precise
anatomical targeting over repetitive sessions [39].
In a similar vein to TMS, transcranial electrical stimulation

(TES) — comprising transcranial direct or alternating current
stimulation (tDCS/tACS) — stimulates the cortex using weak
electrical current. tDCS of themotor cortex has shown effec-
tive reduction of neuropathic pain over sham controls [42].
As electrode positions and sizes in tDCS determine its ther-
apeutic outcomes, engineering techniques, such as finite-
element modelling, can optimise results by modelling
cortical current distribution. Theoretically the main advan-
tage of tDCS lies in its suitability for home use, since the
stimulators are much smaller and logistically practical for
domestic environments. However, a recent Cochrane sys-
tematic review pointed out that most current studies on
non-invasive brain stimulations should be interpreted with
caution due to suboptimal sham conditions and inadequate
sample size [43].

Virtual/Augmented Reality
Virtual reality (VR) and augmented reality (AR) environments
are technologies aiming to form a relatively believable simu-
lation of reality by creating sensory illusions. While VR works
to promote behavioural engagement in a virtual environment
analogous to the real world, AR augments the real world by
the addition of digital information [44]. Commonly used
sensory stimulation in these systems include visual (e.g.
display helmets), auditory (e.g. headphones), and tactile
(e.g. vibrating actuators) feedback, usually with sensors
incorporated to change stimulation settings according to
user responses; in this way, users achieve a psychological
sense of ‘presence’ in VR/AR environments through sensori-
motor immersion.
Pain management through VR/AR employs two principal

strategies: distraction and feedback. Distraction usually in-
volves using active cognitive processing to shift the user’s
attention, such as that required by interactive gaming, result-
ing in increased pain threshold and/or tolerance. Whilst it is
effective in reducing experimental pain and burn-injury-
related discomfort, its results in other pain conditions have
been less consistent [45].
Feedback-based VR/AR strategies are principally aimed

at phantom limb and deafferation pain syndromes and
related disorders in which central representations of pain
are abnormal (such as complex regional pain syndrome).
Founded on Ramachandran’s famous observation that a
mirror illusion of an intact arm in the position of an amputated
arm reduces phantom limb pain, the principle behind VR/AR
pain relief is to simulate multimodal sensorimotor feedback
as realistically as possible, for example, by incorporating
location sensors on the limb stump to generate amore accu-
rate kinaesthetic and visual feedback [46], or by using sur-
face EMG to guide movements of virtual limbs to enable
restoration of perceptual representation of the missing limb
[47]. The growing affordability and portability of VR/AR sys-
tems will likely facilitate the development of standardised
feedback therapy systems applicable to various chronic
pain conditions.
Along the lines of VR/AR, robotic prostheses also show

particular promise in alleviating phantom limb pain through
partial restoration ofmotor and sensory functions. In a recent
pioneering study, a patient suffering from phantom limb pain
experienced a reduction of symptoms after implantation of
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electrodes at the intraneural interface to efferently control an
upper limb prosthesis and to afferently receive electrical
stimulation corresponding to hand/finger sensation. The re-
sidual sensory presence of the missing limb and reduced
pain rating lasted a week after implant removal, before even-
tually reverting to pre-implant level after 3months [48]. Rapid
advances in hand prostheses allowing bidirectional sensori-
motor control in real time are likely to further enhance its
naturalistic feeling [49]. The complete package offers sub-
stantial promise towards the long-term goal of near-natural
functional restoration.

Future Directions
Despite the relative potential of present decoding and anal-
ysis applications for probing pain, it is not clear to what
extent they are informative of the mechanisms or neurobi-
ology behind chronic pain. A clearer theoretical and compu-
tational framework of pain processing is likely to be a critical
pre-requisite in the further development of future therapeutic
technologies; that is, it is the combination of data-driven and
hypothesis-driven experiments that will be important in iden-
tifying new targets for technology-based interventions.

The difficulty of managing chronic pain is predominantly a
result of its complex neurobiology: its symptomology is
pervasive but subjective, and stems from the complex
brain-wide network processing about which we understand
very little. For this reason, it has benefitted less frommedical
technological approaches than other areas of medicine, but
arguably stands to gainmore. Belowwe consider three areas
that are likely to see real advances in the next decade.

First, parallel advances in non-invasive wireless sensor
technology, network technology, and big-data decoding
mean that the ability to realise continuous domestic pain
monitoring is feasible (‘smart sensing’). This will allow pain
communication systems for those with communication defi-
cits, clinical monitoring of patients for diagnostic and treat-
ment evaluation, and quantification for clinical trials.

Second, ‘smart sensing’ may allow for the development of
novel neural engineering-based therapeutic devices that use
feedback control in somemanner. By using techniques such
as fMRI, for example, it may be possible to develop new
types of decoded neural feedback device that provide
improved control over brain activity using conscious control
strategies [50], as an adjunct to standard behavioural and
cognitive therapy. This idea can also be extended to feed-
back-regulated neuromodulation systems, to yield ‘closed-
loop’ control systems that adjust intervention using the
measured pain intensity being experienced as feedback, in
order to achieve continuous pain relief. The benefits of deliv-
ering stimulation at the required dose at the required time
include reducing the probability of habituation to stimulation,
the incidence of side effects, and battery usage.

Finally, more sophisticated stimulation methods are
needed, and the advent of optogenetics has the potential
of transforming the efficacy of pain neuromodulation. Opto-
genetics offers anatomical, cellular and temporal specificity,
and should hold remarkable potential to open a new era in
brain-stimulation technology. Direct manipulation of a spec-
ified population of cells can help elucidate their roles in a
complex physiological process, such as pain, and potentially
identify more refined stimulation targets for treatment pur-
poses. This includes combined excitation and silencing
methods, spinal cord stimulation, multi-fibre stimulation to
drive changes in brain dynamics, targeting neuromodulator
and neuropeptide pathways, glial optogenetics, and other
methods. Aside from the methodological challenge of safely
transfecting opsins in humans, its success will likely depend
on a better understanding of the basic neuronal physiology
of pain information processing that it promises.
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